
Perl version 5.10.0 documentation - CPANPLUS::Backend

Page 1http://perldoc.perl.org

NAME
CPANPLUS::Backend

SYNOPSIS
 my $cb = CPANPLUS::Backend->new;
 my $conf = $cb->configure_object;

 my $author = $cb->author_tree('KANE');
 my $mod = $cb->module_tree('Some::Module');
 my $mod = $cb->parse_module(module => 'Some::Module');

 my @objs = $cb->search(type => TYPE,
 allow => [...]);

 $cb->flush('all');
 $cb->reload_indices;
 $cb->local_mirror;

DESCRIPTION
This module provides the programmer's interface to the CPANPLUS
 libraries.

ENVIRONMENT
When CPANPLUS::Backend is loaded, which is necessary for just
 about every <CPANPLUS>
operation, the environment variable PERL5_CPANPLUS_IS_RUNNING is set to the current process id.

Additionally, the environment variable PERL5_CPANPLUS_IS_VERSION will be set to the version of
CPANPLUS::Backend.

This information might be useful somehow to spawned processes.

METHODS
$cb = CPANPLUS::Backend->new([CONFIGURE_OBJ])

This method returns a new CPANPLUS::Backend object.
 This also initialises the config
corresponding to this object.
 You have two choices in this:

Provide a valid CPANPLUS::Configure object

This will be used verbatim.

No arguments

Your default config will be loaded and used.

New will return a CPANPLUS::Backend object on success and die on
 failure.

$href = $cb->module_tree([@modules_names_list])
Returns a reference to the CPANPLUS module tree.

If you give it any arguments, they will be treated as module names
 and module_tree will try to look
up these module names and
 return the corresponding module objects instead.

See CPANPLUS::Module for the operations you can perform on a
 module object.

$href = $cb->author_tree([@author_names_list])
Returns a reference to the CPANPLUS author tree.

If you give it any arguments, they will be treated as author names
 and author_tree will try to look
up these author names and
 return the corresponding author objects instead.

Perl version 5.10.0 documentation - CPANPLUS::Backend

Page 2http://perldoc.perl.org

See CPANPLUS::Module::Author for the operations you can perform on
 an author object.

$conf = $cb->configure_object;
Returns a copy of the CPANPLUS::Configure object.

See CPANPLUS::Configure for operations you can perform on a
 configure object.

$su = $cb->selfupdate_object;
Returns a copy of the CPANPLUS::Selfupdate object.

See the CPANPLUS::Selfupdate manpage for the operations
 you can perform on the selfupdate
object.

@mods = $cb->search(type => TYPE, allow => AREF, [data => AREF, verbose => BOOL])
search enables you to search for either module or author objects,
 based on their data. The type
you can specify is any of the
 accessors specified in CPANPLUS::Module::Author or
CPANPLUS::Module. search will determine by the type you
 specified whether to search by author
object or module object.

You have to specify an array reference of regular expressions or
 strings to match against. The rules
used for this array ref are the
 same as in Params::Check, so read that manpage for details.

The search is an or search, meaning that if any of the criteria
 match, the search is considered to be
successful.

You can specify the result of a previous search as data to limit
 the new search to these module or
author objects, rather than the
 entire module or author tree. This is how you do and searches.

Returns a list of module or author objects on success and false
 on failure.

See CPANPLUS::Module for the operations you can perform on a
 module object.
 See
CPANPLUS::Module::Author for the operations you can perform on
 an author object.

$backend_rv = $cb->fetch(modules => \@mods)
Fetches a list of modules. @mods can be a list of distribution
 names, module names or module
objects--basically anything that parse_module can understand.

See the equivalent method in CPANPLUS::Module for details on
 other options you can pass.

Since this is a multi-module method call, the return value is
 implemented as a
CPANPLUS::Backend::RV object. Please consult
 that module's documentation on how to interpret
the return value.

$backend_rv = $cb->extract(modules => \@mods)
Extracts a list of modules. @mods can be a list of distribution
 names, module names or module
objects--basically anything that parse_module can understand.

See the equivalent method in CPANPLUS::Module for details on
 other options you can pass.

Since this is a multi-module method call, the return value is
 implemented as a
CPANPLUS::Backend::RV object. Please consult
 that module's documentation on how to interpret
the return value.

$backend_rv = $cb->install(modules => \@mods)
Installs a list of modules. @mods can be a list of distribution
 names, module names or module
objects--basically anything that parse_module can understand.

See the equivalent method in CPANPLUS::Module for details on
 other options you can pass.

Since this is a multi-module method call, the return value is
 implemented as a

Perl version 5.10.0 documentation - CPANPLUS::Backend

Page 3http://perldoc.perl.org

CPANPLUS::Backend::RV object. Please consult
 that module's documentation on how to interpret
the return value.

$backend_rv = $cb->readme(modules => \@mods)
Fetches the readme for a list of modules. @mods can be a list of
 distribution names, module names or
module objects--basically
 anything that parse_module can understand.

See the equivalent method in CPANPLUS::Module for details on
 other options you can pass.

Since this is a multi-module method call, the return value is
 implemented as a
CPANPLUS::Backend::RV object. Please consult
 that module's documentation on how to interpret
the return value.

$backend_rv = $cb->files(modules => \@mods)
Returns a list of files used by these modules if they are installed. @mods can be a list of distribution
names, module names or module
 objects--basically anything that parse_module can understand.

See the equivalent method in CPANPLUS::Module for details on
 other options you can pass.

Since this is a multi-module method call, the return value is
 implemented as a
CPANPLUS::Backend::RV object. Please consult
 that module's documentation on how to interpret
the return value.

$backend_rv = $cb->distributions(modules => \@mods)
Returns a list of module objects representing all releases for this
 module on success. @mods can be a
list of distribution names, module names or module
 objects, basically anything that parse_module can
understand.

See the equivalent method in CPANPLUS::Module for details on
 other options you can pass.

Since this is a multi-module method call, the return value is
 implemented as a
CPANPLUS::Backend::RV object. Please consult
 that module's documentation on how to interpret
the return value.

$mod_obj = $cb->parse_module(module => $modname|$distname|$modobj|URI)
parse_module tries to find a CPANPLUS::Module object that
 matches your query. Here's a list of
examples you could give to parse_module;

Text::Bastardize

Text-Bastardize

Text-Bastardize-1.06

AYRNIEU/Text-Bastardize

AYRNIEU/Text-Bastardize-1.06

AYRNIEU/Text-Bastardize-1.06.tar.gz

http://example.com/Text-Bastardize-1.06.tar.gz

file:///tmp/Text-Bastardize-1.06.tar.gz

These items would all come up with a CPANPLUS::Module object for Text::Bastardize. The
ones marked explicitly as being version 1.06
 would give back a CPANPLUS::Module object of that
version.
 Even if the version on CPAN is currently higher.

If parse_module is unable to actually find the module you are looking
 for in its module tree, but you
supplied it with an author, module
 and version part in a distribution name or URI, it will create a fake
CPANPLUS::Module object for you, that you can use just like the
 real thing.

See CPANPLUS::Module for the operations you can perform on a
 module object.

Perl version 5.10.0 documentation - CPANPLUS::Backend

Page 4http://perldoc.perl.org

If even this fancy guessing doesn't enable parse_module to create
 a fake module object for you to
use, it will warn about an error and
 return false.

$bool = $cb->reload_indices([update_source => BOOL, verbose => BOOL]);
This method reloads the source files.

If update_source is set to true, this will fetch new source files
 from your CPAN mirror. Otherwise,
reload_indices will do its
 usual cache checking and only update them if they are out of date.

By default, update_source will be false.

The verbose setting defaults to what you have specified in your
 config file.

Returns true on success and false on failure.

$bool = $cb->flush(CACHE_NAME)
This method allows flushing of caches.
 There are several things which can be flushed:

* methods

The return status of methods which have been attempted, such as
 different ways of fetching
files. It is recommended that automatic
 flushing be used instead.

* hosts

The return status of URIs which have been attempted, such as
 different hosts of fetching files.
It is recommended that automatic
 flushing be used instead.

* modules

Information about modules such as prerequisites and whether
 installation succeeded, failed,
or was not attempted.

* lib

This resets PERL5LIB, which is changed to ensure that while installing
 modules they are in
our @INC.

* load

This resets the cache of modules we've attempted to load, but failed.
 This enables you to load
them again after a failed load, if they somehow have become available.

* all

Flush all of the aforementioned caches.

Returns true on success and false on failure.

@mods = $cb->installed()
Returns a list of module objects of all your installed modules.
 If an error occurs, it will return false.

See CPANPLUS::Module for the operations you can perform on a
 module object.

$bool = $cb->local_mirror([path => '/dir/to/save/to', index_files => BOOL, force => BOOL,
verbose => BOOL])

Creates a local mirror of CPAN, of only the most recent sources in a
 location you specify. If you set
this location equal to a custom host
 in your CPANPLUS::Config you can use your local mirror to
install
 from.

It takes the following arguments:

path

The location where to create the local mirror.

Perl version 5.10.0 documentation - CPANPLUS::Backend

Page 5http://perldoc.perl.org

index_files

Enable/disable fetching of index files. You can disable fetching of the
 index files if you don't
plan to use the local mirror as your primary site, or if you'd like up-to-date index files be
fetched from elsewhere.

Defaults to true.

force

Forces refetching of packages, even if they are there already.

Defaults to whatever setting you have in your CPANPLUS::Config.

verbose

Prints more messages about what its doing.

Defaults to whatever setting you have in your CPANPLUS::Config.

Returns true on success and false on error.

$file = $cb->autobundle([path => OUTPUT_PATH, force => BOOL, verbose => BOOL])
Writes out a snapshot of your current installation in CPAN bundle
 style. This can then be used to install
the same modules for a
 different or on a different machine.

It will, by default, write to an 'autobundle' directory under your
 cpanplus homedirectory, but you can
override that by supplying a path argument.

It will return the location of the output file on success and false on
 failure.

CUSTOM MODULE SOURCES
Besides the sources as provided by the general CPAN mirrors, it's possible to add your own sources
list to your CPANPLUS index.

The methodology behind this works much like Debian's apt-sources.

The methods below show you how to make use of this functionality. Also
 note that most of these
methods are available through the default shell
 plugin command /cs, making them available as
shortcuts through the
 shell and via the commandline.

%files = $cb->list_custom_sources
Returns a mapping of registered custom sources and their local indices
 as follows:

 /full/path/to/local/index => http://remote/source

Note that any file starting with an # is being ignored.

$local_index = $cb->add_custom_source(uri => URI, [verbose => BOOL]);
Adds an URI to your own sources list and mirrors its index. See the documentation on
$cb->update_custom_source on how this is done.

Returns the full path to the local index on success, or false on failure.

Note that when adding a new URI, the change to the in-memory tree is
 not saved until you rebuild or
save the tree to disk again. You can do this using the $cb->reload_indices method.

$local_index = $cb->remove_custom_source(uri => URI, [verbose => BOOL]);
Removes an URI from your own sources list and removes its index.

To find out what URIs you have as part of your own sources list, use
 the
$cb->list_custom_sources method.

Returns the full path to the deleted local index file on success, or false
 on failure.

Perl version 5.10.0 documentation - CPANPLUS::Backend

Page 6http://perldoc.perl.org

$bool = $cb->update_custom_source([remote => URI]);
Updates the indexes for all your custom sources. It does this by fetching
 a file called packages.txt
in the root of the custom sources's URI.
 If you provide the remote argument, it will only update the
index for
 that specific URI.

Here's an example of how custom sources would resolve into index files:

 file:///path/to/sources => file:///path/to/sources/packages.txt
 http://example.com/sources => http://example.com/sources/packages.txt
 ftp://example.com/sources => ftp://example.com/sources/packages.txt

The file packages.txt simply holds a list of packages that can be found
 under the root of the URI.
This file can be automatically generated for
 you when the remote source is a file:// URI. For
http://, ftp://,
 and similar, the administrator of that repository should run the method
$cb->write_custom_source_index on the repository to allow remote
 users to index it.

For details, see the $cb->write_custom_source_index method below.

All packages that are added via this mechanism will be attributed to the
 author with CPANID LOCAL.
You can use this id to search for all added packages.

$file = $cb->write_custom_source_index(path => /path/to/package/root, [to =>
/path/to/index/file, verbose => BOOL]);

Writes the index for a custom repository root. Most users will not have to worry about this, but
administrators of a repository will need to make sure
 their indexes are up to date.

The index will be written to a file called packages.txt in your repository
 root, which you can specify
with the path argument. You can override this
 location by specifying the to argument, but in normal
operation, that should
 not be required.

Once the index file is written, users can then add the URI pointing to the repository to their custom list
of sources and start using it right away. See the $cb->add_custom_source method for user
details.

BUG REPORTS
Please report bugs or other issues to <bug-cpanplus@rt.cpan.org<gt>.

AUTHOR
This module by Jos Boumans <kane@cpan.org>.

COPYRIGHT
The CPAN++ interface (of which this module is a part of) is copyright (c) 2001 - 2007, Jos Boumans <
kane@cpan.org>. All rights reserved.

This library is free software; you may redistribute and/or modify it under the same terms as Perl itself.

SEE ALSO
CPANPLUS::Configure, CPANPLUS::Module, CPANPLUS::Module::Author, CPANPLUS::Selfupdate

