
Perl version 5.10.0 documentation - PerlIO

Page 1http://perldoc.perl.org

NAME
PerlIO - On demand loader for PerlIO layers and root of PerlIO::* name space

SYNOPSIS
 open($fh,"<:crlf", "my.txt"); # support platform-native and CRLF text
files

 open($fh,"<","his.jpg"); # portably open a binary file for reading
 binmode($fh);

 Shell:
 PERLIO=perlio perl

DESCRIPTION
When an undefined layer 'foo' is encountered in an open or binmode layer specification then C code
performs the equivalent of:

 use PerlIO 'foo';

The perl code in PerlIO.pm then attempts to locate a layer by doing

 require PerlIO::foo;

Otherwise the PerlIO package is a place holder for additional
 PerlIO related functions.

The following layers are currently defined:

:unix

Lowest level layer which provides basic PerlIO operations in terms of
 UNIX/POSIX numeric
file descriptor calls
 (open(), read(), write(), lseek(), close()).

:stdio

Layer which calls fread, fwrite and fseek/ftell etc. Note
 that as this is "real" stdio it will
ignore any layers beneath it and
 got straight to the operating system via the C library as usual.

:perlio

A from scratch implementation of buffering for PerlIO. Provides fast
 access to the buffer for
sv_gets which implements perl's readline/<>
 and in general attempts to minimize data
copying.

:perlio will insert a :unix layer below itself to do low level IO.

:crlf

A layer that implements DOS/Windows like CRLF line endings. On read
 converts pairs of
CR,LF to a single "\n" newline character. On write
 converts each "\n" to a CR,LF pair. Note
that this layer likes to be
 one of its kind: it silently ignores attempts to be pushed into the
 layer
stack more than once.

It currently does not mimic MS-DOS as far as treating of Control-Z
 as being an end-of-file
marker.

(Gory details follow) To be more exact what happens is this: after
 pushing itself to the stack,
the :crlf layer checks all the layers
 below itself to find the first layer that is capable of being
a CRLF
 layer but is not yet enabled to be a CRLF layer. If it finds such a
 layer, it enables the
CRLFness of that other deeper layer, and then
 pops itself off the stack. If not, fine, use the
one we just pushed.

Perl version 5.10.0 documentation - PerlIO

Page 2http://perldoc.perl.org

The end result is that a :crlf means "please enable the first CRLF
 layer you can find, and if
you can't find one, here would be a good
 spot to place a new one."

Based on the :perlio layer.

:mmap

A layer which implements "reading" of files by using mmap() to
 make (whole) file appear in
the process's address space, and then
 using that as PerlIO's "buffer". This may be faster in
certain
 circumstances for large files, and may result in less physical memory
 use when
multiple processes are reading the same file.

Files which are not mmap()-able revert to behaving like the :perlio
 layer. Writes also
behave like :perlio layer as mmap() for write
 needs extra house-keeping (to extend the file)
which negates any advantage.

The :mmap layer will not exist if platform does not support mmap().

:utf8

Declares that the stream accepts perl's internal encoding of
 characters. (Which really is UTF-8
on ASCII machines, but is
 UTF-EBCDIC on EBCDIC machines.) This allows any character
perl can
 represent to be read from or written to the stream. The UTF-X encoding
 is chosen to
render simple text parts (i.e. non-accented letters,
 digits and common punctuation) human
readable in the encoded file.

Here is how to write your native data out using UTF-8 (or UTF-EBCDIC)
 and then read it back
in.

	 open(F, ">:utf8", "data.utf");
	 print F $out;
	 close(F);

	 open(F, "<:utf8", "data.utf");
	 $in = <F>;
	 close(F);

Note that this layer does not validate byte sequences. For reading
 input, using
:encoding(utf8) instead of bare :utf8, is strongly
 recommended.

:bytes

This is the inverse of :utf8 layer. It turns off the flag
 on the layer below so that data read
from it is considered to
 be "octets" i.e. characters in range 0..255 only. Likewise
 on output perl
will warn if a "wide" character is written
 to a such a stream.

:raw

The :raw layer is defined as being identical to calling binmode($fh) - the stream is made
suitable for passing binary data
 i.e. each byte is passed as-is. The stream will still be
 buffered.

In Perl 5.6 and some books the :raw layer (previously sometimes also
 referred to as a
"discipline") is documented as the inverse of the :crlf layer. That is no longer the case -
other layers which would
 alter binary nature of the stream are also disabled. If you want UNIX

line endings on a platform that normally does CRLF translation, but still
 want UTF-8 or
encoding defaults the appropriate thing to do is to add :perlio to PERLIO environment
variable.

The implementation of :raw is as a pseudo-layer which when "pushed"
 pops itself and then
any layers which do not declare themselves as suitable
 for binary data. (Undoing :utf8 and :crlf
are implemented by clearing
 flags rather than popping layers but that is an implementation
detail.)

As a consequence of the fact that :raw normally pops layers
 it usually only makes sense to
have it as the only or first element in
 a layer specification. When used as the first element it

Perl version 5.10.0 documentation - PerlIO

Page 3http://perldoc.perl.org

provides
 a known base on which to build e.g.

 open($fh,":raw:utf8",...)

will construct a "binary" stream, but then enable UTF-8 translation.

:pop

A pseudo layer that removes the top-most layer. Gives perl code
 a way to manipulate the
layer stack. Should be considered
 as experimental. Note that :pop only works on real layers

and will not undo the effects of pseudo layers like :utf8.
 An example of a possible use might
be:

 open($fh,...)
 ...
 binmode($fh,":encoding(...)"); # next chunk is encoded
 ...
 binmode($fh,":pop"); # back to un-encoded

A more elegant (and safer) interface is needed.

:win32

On Win32 platforms this experimental layer uses native "handle" IO
 rather than unix-like
numeric file descriptor layer. Known to be
 buggy as of perl 5.8.2.

Custom Layers
It is possible to write custom layers in addition to the above builtin
 ones, both in C/XS and Perl. Two
such layers (and one example written
 in Perl using the latter) come with the Perl distribution.

:encoding

Use :encoding(ENCODING) either in open() or binmode() to install
 a layer that does
transparently character set and encoding transformations,
 for example from Shift-JIS to
Unicode. Note that under stdio
 an :encoding also enables :utf8. See PerlIO::encoding

for more information.

:via

Use :via(MODULE) either in open() or binmode() to install a layer
 that does whatever
transformation (for example compression /
 decompression, encryption / decryption) to the
filehandle.
 See PerlIO::via for more information.

Alternatives to raw
To get a binary stream an alternate method is to use:

 open($fh,"whatever")
 binmode($fh);

this has advantage of being backward compatible with how such things have
 had to be coded on
some platforms for years.

To get an un-buffered stream specify an unbuffered layer (e.g. :unix)
 in the open call:

 open($fh,"<:unix",$path)

Defaults and how to override them
If the platform is MS-DOS like and normally does CRLF to "\n"
 translation for text files then the default
layers are :

 unix crlf

Perl version 5.10.0 documentation - PerlIO

Page 4http://perldoc.perl.org

(The low level "unix" layer may be replaced by a platform specific low
 level layer.)

Otherwise if Configure found out how to do "fast" IO using system's
 stdio, then the default layers
are:

 unix stdio

Otherwise the default layers are

 unix perlio

These defaults may change once perlio has been better tested and tuned.

The default can be overridden by setting the environment variable
 PERLIO to a space separated list
of layers (unix or platform low
 level layer is always pushed first).

This can be used to see the effect of/bugs in the various layers e.g.

 cd .../perl/t
 PERLIO=stdio ./perl harness
 PERLIO=perlio ./perl harness

For the various value of PERLIO see "PERLIO" in perlrun.

Querying the layers of filehandles
The following returns the names of the PerlIO layers on a filehandle.

 my @layers = PerlIO::get_layers($fh); # Or FH, *FH, "FH".

The layers are returned in the order an open() or binmode() call would
 use them. Note that the
"default stack" depends on the operating
 system and on the Perl version, and both the compile-time
and
 runtime configurations of Perl.

The following table summarizes the default layers on UNIX-like and
 DOS-like platforms and
depending on the setting of the $ENV{PERLIO}:

 PERLIO UNIX-like DOS-like
 ------ --------- --------
 unset / "" unix perlio / stdio [1] unix crlf
 stdio unix perlio / stdio [1] stdio
 perlio unix perlio unix perlio
 mmap unix mmap unix mmap

 # [1] "stdio" if Configure found out how to do "fast stdio" (depends
 # on the stdio implementation) and in Perl 5.8, otherwise "unix perlio"

By default the layers from the input side of the filehandle is
 returned, to get the output side use the
optional output argument:

 my @layers = PerlIO::get_layers($fh, output => 1);

(Usually the layers are identical on either side of a filehandle but
 for example with sockets there may
be differences, or if you have
 been using the open pragma.)

There is no set_layers(), nor does get_layers() return a tied array
 mirroring the stack, or anything
fancy like that. This is not
 accidental or unintentional. The PerlIO layer stack is a bit more
 complicated
than just a stack (see for example the behaviour of :raw).
 You are supposed to use open() and

Perl version 5.10.0 documentation - PerlIO

Page 5http://perldoc.perl.org

binmode() to manipulate the stack.

Implementation details follow, please close your eyes.

The arguments to layers are by default returned in parenthesis after
 the name of the layer, and certain
layers (like utf8) are not real
 layers but instead flags on real layers: to get all of these returned

separately use the optional details argument:

 my @layer_and_args_and_flags = PerlIO::get_layers($fh, details => 1);

The result will be up to be three times the number of layers:
 the first element will be a name, the
second element the arguments
 (unspecified arguments will be undef), the third element the flags,
 the
fourth element a name again, and so forth.

You may open your eyes now.

AUTHOR
Nick Ing-Simmons <nick@ing-simmons.net>

SEE ALSO
"binmode" in perlfunc, "open" in perlfunc, perlunicode, perliol, Encode

