
Perl version 5.10.0 documentation - Tie::Hash

Page 1http://perldoc.perl.org

NAME
Tie::Hash, Tie::StdHash, Tie::ExtraHash - base class definitions for tied hashes

SYNOPSIS
 package NewHash;
 require Tie::Hash;

 @ISA = qw(Tie::Hash);

 sub DELETE { ... }		 # Provides needed method
 sub CLEAR { ... }		 # Overrides inherited method

 package NewStdHash;
 require Tie::Hash;

 @ISA = qw(Tie::StdHash);

 # All methods provided by default, define only those needing overrides
 # Accessors access the storage in %{$_[0]};
 # TIEHASH should return a reference to the actual storage
 sub DELETE { ... }

 package NewExtraHash;
 require Tie::Hash;

 @ISA = qw(Tie::ExtraHash);

 # All methods provided by default, define only those needing overrides
 # Accessors access the storage in %{$_[0][0]};
 # TIEHASH should return an array reference with the first element being
 # the reference to the actual storage
 sub DELETE {
 $_[0][1]->('del', $_[0][0], $_[1]); # Call the report writer
 delete $_[0][0]->{$_[1]};		 # $_[0]->SUPER::DELETE($_[1])
 }

 package main;

 tie %new_hash, 'NewHash';
 tie %new_std_hash, 'NewStdHash';
 tie %new_extra_hash, 'NewExtraHash',
	 sub {warn "Doing \U$_[1]\E of $_[2].\n"};

DESCRIPTION
This module provides some skeletal methods for hash-tying classes. See perltie for a list of the
functions required in order to tie a hash
 to a package. The basic Tie::Hash package provides a new
method, as well
 as methods TIEHASH, EXISTS and CLEAR. The Tie::StdHash and Tie::ExtraHash
packages
 provide most methods for hashes described in perltie (the exceptions
 are UNTIE and
DESTROY). They cause tied hashes to behave exactly like standard hashes,
 and allow for selective
overwriting of methods. Tie::Hash grandfathers the new method: it is used if TIEHASH is not defined

in the case a class forgets to include a TIEHASH method.

Perl version 5.10.0 documentation - Tie::Hash

Page 2http://perldoc.perl.org

For developers wishing to write their own tied hashes, the required methods
 are briefly defined below.
See the perltie section for more detailed
 descriptive, as well as example code:

TIEHASH classname, LIST

The method invoked by the command tie %hash, classname. Associates a new
 hash
instance with the specified class. LIST would represent additional
 arguments (along the lines
of AnyDBM_File and compatriots) needed to
 complete the association.

STORE this, key, value

Store datum value into key for the tied hash this.

FETCH this, key

Retrieve the datum in key for the tied hash this.

FIRSTKEY this

Return the first key in the hash.

NEXTKEY this, lastkey

Return the next key in the hash.

EXISTS this, key

Verify that key exists with the tied hash this.

The Tie::Hash implementation is a stub that simply croaks.

DELETE this, key

Delete the key key from the tied hash this.

CLEAR this

Clear all values from the tied hash this.

SCALAR this

Returns what evaluating the hash in scalar context yields.

Tie::Hash does not implement this method (but Tie::StdHash
 and Tie::ExtraHash do).

Inheriting from Tie::StdHash
The accessor methods assume that the actual storage for the data in the tied
 hash is in the hash
referenced by tied(%tiedhash). Thus overwritten TIEHASH method should return a hash
reference, and the remaining methods
 should operate on the hash referenced by the first argument:

 package ReportHash;
 our @ISA = 'Tie::StdHash';

 sub TIEHASH {
 my $storage = bless {}, shift;
 warn "New ReportHash created, stored in $storage.\n";
 $storage
 }
 sub STORE {
 warn "Storing data with key $_[1] at $_[0].\n";
 $_[0]{$_[1]} = $_[2]
 }

Inheriting from Tie::ExtraHash
The accessor methods assume that the actual storage for the data in the tied
 hash is in the hash
referenced by (tied(%tiedhash))->[0]. Thus overwritten TIEHASH method should return an

Perl version 5.10.0 documentation - Tie::Hash

Page 3http://perldoc.perl.org

array reference with the first
 element being a hash reference, and the remaining methods should
operate on the
 hash %{ $_[0]->[0] }:

 package ReportHash;
 our @ISA = 'Tie::ExtraHash';

 sub TIEHASH {
 my $class = shift;
 my $storage = bless [{}, @_], $class;
 warn "New ReportHash created, stored in $storage.\n";
 $storage;
 }
 sub STORE {
 warn "Storing data with key $_[1] at $_[0].\n";
 $_[0][0]{$_[1]} = $_[2]
 }

The default TIEHASH method stores "extra" arguments to tie() starting
 from offset 1 in the array
referenced by tied(%tiedhash); this is the
 same storage algorithm as in TIEHASH subroutine
above. Hence, a typical
 package inheriting from Tie::ExtraHash does not need to overwrite this

method.

SCALAR, UNTIE and DESTROY
The methods UNTIE and DESTROY are not defined in Tie::Hash, Tie::StdHash, or Tie::ExtraHash.
Tied hashes do not require
 presence of these methods, but if defined, the methods will be called in

proper time, see perltie.

SCALAR is only defined in Tie::StdHash and Tie::ExtraHash.

If needed, these methods should be defined by the package inheriting from Tie::Hash, Tie::StdHash,
or Tie::ExtraHash. See "SCALAR" in pertie
 to find out what happens when SCALAR does not exist.

MORE INFORMATION
The packages relating to various DBM-related implementations (DB_File, NDBM_File, etc.) show
examples of general tied hashes, as does the Config module. While these do not utilize Tie::Hash,
they serve as
 good working examples.

