
Perl version 5.10.0 documentation - XS::APItest

Page 1http://perldoc.perl.org

NAME
XS::APItest - Test the perl C API

SYNOPSIS
 use XS::APItest;
 print_double(4);

ABSTRACT
This module tests the perl C API. Currently tests that printf
 works correctly.

DESCRIPTION
This module can be used to check that the perl C API is behaving
 correctly. This module provides test
functions and an associated
 test script that verifies the output.

This module is not meant to be installed.

EXPORT
Exports all the test functions:

print_double

Test that a double-precision floating point number is formatted
 correctly by printf.

 print_double($val);

Output is sent to STDOUT.

print_long_double

Test that a long double is formatted correctly by printf. Takes no arguments - the test
value is hard-wired
 into the function (as "7").

 print_long_double();

Output is sent to STDOUT.

have_long_double

Determine whether a long double is supported by Perl. This should
 be used to determine
whether to test print_long_double.

 print_long_double() if have_long_double;

print_nv

Test that an NV is formatted correctly by printf.

 print_nv($val);

Output is sent to STDOUT.

print_iv

Test that an IV is formatted correctly by printf.

 print_iv($val);

Output is sent to STDOUT.

print_uv

Test that an UV is formatted correctly by printf.

 print_uv($val);

Perl version 5.10.0 documentation - XS::APItest

Page 2http://perldoc.perl.org

Output is sent to STDOUT.

print_int

Test that an int is formatted correctly by printf.

 print_int($val);

Output is sent to STDOUT.

print_long

Test that an long is formatted correctly by printf.

 print_long($val);

Output is sent to STDOUT.

print_float

Test that a single-precision floating point number is formatted
 correctly by printf.

 print_float($val);

Output is sent to STDOUT.

call_sv, call_pv, call_method

These exercise the C calls of the same names. Everything after the flags
 arg is passed as the
the args to the called function. They return whatever
 the C function itself pushed onto the
stack, plus the return value from
 the function; for example

 call_sv(sub { @_, 'c' }, G_ARRAY, 'a', 'b'); # returns 'a',
'b', 'c', 3
 call_sv(sub { @_ }, G_SCALAR, 'a', 'b'); # returns 'b', 1

eval_sv

Evaluates the passed SV. Result handling is done the same as for call_sv() etc.

eval_pv

Exercises the C function of the same name in scalar context. Returns the
 same SV that the C
function returns.

require_pv

Exercises the C function of the same name. Returns nothing.

SEE ALSO
XS::Typemap, perlapi.

AUTHORS
Tim Jenness, <t.jenness@jach.hawaii.edu>,
 Christian Soeller, <csoelle@mph.auckland.ac.nz>,
 Hugo
van der Sanden <hv@crypt.compulink.co.uk>

COPYRIGHT AND LICENSE
Copyright (C) 2002,2004 Tim Jenness, Christian Soeller, Hugo van der Sanden.
 All Rights Reserved.

This library is free software; you can redistribute it and/or modify
 it under the same terms as Perl
itself.

